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Abstract

Spacecraft are continuously fed with signals from sen-
sors to determine their state, for example, attitude, po-
sition, and velocity. Optical Navigation (OPNAV) is a
method for determining the attitude of a spacecraft based
on optical measurements, usually a camera or a Light De-
tection and Ranging (LIDAR) sensor. These measure-
ments of celestial bodies or other spacecraft introduce
noise and outliers into large datasets due to the imper-
fections in the sensor. This makes the measurements dif-
ficult to realign with a model. Many methods have been
introduced to decrease the impact of outliers in numerical
models, as a classic least squares fit is not enough to re-
ject the influence of outliers. Random Sample Consensus
(RANSAC) is a well-established algorithm for fitting ex-
perimental models and rejecting outliers from datasets by
sampling a large dataset and comparing the relative errors
in the models generated by the sample. Maximum Likeli-
hood Estimation Sample Consensus (MLESAC) is another
more robust method introduced in [1], where the classifi-
cation is based further on the statistics of the dataset,
rather than a simple tolerance in RANSAC. A new Sta-
tistically Optimal RANSAC (SO-RANSAC) approach is
introduced as a new and improved algorithm developed by
XAnalytix. In the following report, RANSAC, MLESAC,
and SO-RANSAC are applied to pose estimation problem.
Pose estimation is a computer vision task to determine
the orientation of a sensor relative to a body [2]. By ap-
plying these algorithms to the pose estimation problem, a
more accurate attitude transformation can be obtained by
rejecting outliers in the sensor’s measurements. Various
classification metrics for the estimators are presented for
comparison.

Project Overview

Part of a Small Business Innovative Research (SBIR)
grant awarded to XAnalytix Systems by NASA Goddard
titled Improved Autonomous Navigation Through Opti-
mal Sensor Outliers, XAnalytix is in development of a
Statistically Optimal RANSAC (SO-RANSAC) that uses
novel algorithms to more accurately estimate pose using
the covariance of the dataset[3]. This initiative will ex-
plore the comparison of SO-RANSAC to known RANSAC
and MLESAC methods that can be deployed for space-
craft navigation in NASA’s future missions. Outlier rejec-
tion is specifically important for relative navigation, such
that formation flying and rendezvous can occur seamlessly.
These events are generally assisted with a sensor (LIDAR)
to provide accurate 3D depth of field measurements. Pre-
liminary results will show the feasibility of SO-RANSAC
versus other robust estimators.

1 Pose Estimation

This section explores the implementation of the pose
estimation that is used directly in the RANSAC and MLE-
SAC algorithms.

1.1 Problem Definition

First, to have a pose estimation problem that can
be solved through Horn’s Algorithm [4], a translation
and a rotation must be applied to an array of points
X = (x1,x2, ...,xn) where xi = (xi, yi, zi)

T in R3. A
transformation T , where T is a proper orthogonal ma-
trix, is applied to the set of points X. That product is
translated by a vector b = (bx, by, bz)

T to obtain a set of
3D points of correspondence Y = (y1,y2, ...,yn). That
is,

Y i = TXi + b (1.1)

The main objective of the pose estimation is to find
the pose (T , b) from datasets (X,Y ). Therefore, the goal
of the robust estimator algorithms is to obtain a more ac-
curate pose estimation over multiple trials by identifying
outliers in the measured dataset Y .

1.2 Euclidean Transformation Definition

To input data into the algorithm, a random set of n
points X can be generated with size (3 × n). A general
3D rotation can be defined by a quaternion q, which can
be derived from a singular rotation θ about an arbitrary
direction a that defines the Euler axis. To calculate a
rotation matrix from a quaternion use the Rodriguez Ro-
tation Formula, to generate a rotation matrix to translate
from an observer frame to a body fixed frame, from [5],

T = cos θI3×3 − sin θ[a×] + (1− cos θ)aaT (1.2)

Here, [a×] is a cross product matrix, or, for a =
(a1, a2, a3),

[a×] =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 (1.3)

Or in terms of a quaternion q̄ = (q, qs)
T ,

T = (q2s − qTq)I3×3 − 2qs[q×] + 2qqT (1.4)

Therefore, for a θ rotation about the Euler axis a,
a quaternion of q can be obtained, and using the above
equations a rotation matrix T can be obtained. Any vec-
tor b can be chosen to transform the dataset.
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1.3 Adding Measurement Noise and Outliers

To add random noise to the points of correspondence,
a noise standard deviation σ can be multiplied by a ran-
domly sampled array ϵ of size (3×n) uniformly distributed
between zero and one. This noise can be added to the mea-
sured dataset with Y ϵ = Y +σϵ. The result of this step is
to add Gaussian noise to the dataset. Further work could
involve modeling the noise as a Gaussian mixture.

Outliers are added to the dataset by random seed-
ing and are set to be in the domain of the measured
dataset, or generally around the measured object. The
number of outliers inserted into the dataset is important
to know when evaluating classification metrics for these
algorithms.

1.4 Pose Estimation

To solve for the pose, Horn’s Algorithm [4] will be used
with Singular Value Decomposition (SVD). For a set of
points (x,y), with correspondence based on a rigid body
translation and rotation (T , b), the pose, or transforma-
tion defined in Eqn. 1.5 can be obtained with the following
steps. Restating the problem,

yi = Txi + b (1.5)

Generally, the goal is to find T and b that minimize the
loss function O or bring the measured and known points
into alignment.

O =

n∑
i=1

∥yi − Txi − b∥2 (1.6)

First, the centroid of each dataset can be calculated
by the following, where n is the number of points.

x̄ =
1

n

n∑
i=1

xi, ȳ =
1

n

n∑
i=1

yi (1.7)

The loss function can be expanded with the new defi-
nition,

O =

n∑
i=1

∥yi − Txi − ȳ − T x̄∥2 (1.8)

Next, the datasets are each moved to the centroid by
the following definition, and the loss function is rewritten
and expanded in terms of x′

i and y′
i.

x′
i = xi − x̄, y′

i = yi − ȳ (1.9)

Inserting this into the loss function,

O =

n∑
i=1

∥y′
i − Tx′

i∥2 (1.10)

=

n∑
i=1

∥y′
i
Ty′

i + x′
i
Tx′

i − 2y′
i
TTx′

i∥ (1.11)

Therefore, the minimization of the O occurs with the
maximization of the g.

g =

n∑
i=1

y′
i
TTx′

i (1.12)

= Tr

(
n∑

i=1

Tx′
i
Ty′

i

)
(1.13)

From the identity aTRb = Tr
(
RabT

)
. Next, define

a matrix M such that g = Tr (TM),

M =

n∑
i=1

y′
ix

′T
i (1.14)

A singular value decomposition can be applied to ma-
trix M to break down the linear transformation into a
sequence of rotations or reflections given by U and V ,
and a matrix of singular values Σ.

(U ,Σ,V T ) = svd(M) (1.15)

The rotation matrix can be calculated as

T = V UT (1.16)

With the estimated attitude transformation, the trans-
lation vector b can be found as follows.

b = y − Tx (1.17)

Thus, with a set of points of correspondence, the Eu-
clidean transformation that defines the measured pose can
be reconstructed.

2 Random Sample Consensus - RANSAC

RANSAC, first introduced in 1981 [6] is a general
method for fitting an experimental model while account-
ing for outliers, and in this application, RANSAC is wrap-
ping a pose estimation algorithm. Ideally, the RANSAC
will return a more accurate pose estimation with a mea-
sured dataset containing many outliers. These outliers
may take the form of noisy measurements, or complete
failures of the measurement system.
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To begin, one must define a set number of trials Nt

over which to loop the RANSAC. The statistics of this
choice are explored in Sec. 2.1 and in [7], but it gener-
ally is dependent on the ratio of outliers to the number of
points, and the confidence of having at least one RANSAC
trial that produces a correct pose.

Next, inside the iteration, randomly sample three
points of correspondence at a minimum. Then calculate
the pose with the sampled points, and using this pose,
transform the original points to generate the estimated
measurements. Next, calculate the error between the es-
timated measurements and the original measurements.

To generate the consensus set C, find all of the errors
less than some tolerance te, which is usually a multiple of
the applied noise, and then save the size of the consensus
set. Next, check if the consensus set is larger than the
largest consensus set. If so, save the pose and consensus
set. These steps are spelled out in pseudocode in Alg. 1.

Algorithm 1 Random Sample Consensus

1: for k ≤ Nt do
2: Randomly sample (X,Y ) → (x,y)
3: Estimate pose (T , b)
4: Compute Y k = TX + b
5: Compute e = ||Y − Y k||
6: Compute C = e ≤ te
7: Calculate ck = size(C)
8: if cbest < ck then
9: Save T , b, and C as the best

10: ck = cbest
11: end if
12: end for

Additionally, if RANSAC were to be described as a
loss function of the error e to be minimized as in [8],

L (e) =

{
0 |e| < te

const else
(2.1)

2.1 Defining the Number of Trials for a RANSAC

The number of trials for a RANSAC, Nt, can be de-
fined in multiple ways. One can define the number of trials
as a specified integer or allow the iteration to continue in-
definitely until some number of inliers are found. Another
way, shown in [7], of defining the number of iterations is
with a probability P that at least one sample of M points
contains all inliers or no outliers. That is, where e is the
probability that a point is an outlier, the probability that
any point is an inlier is

P = 1− e (2.2)

Now, for a sample of M points, the probability that

there is one or more outliers within a sample is,

P = 1− (1− e)M (2.3)

Next, for Nt trials, the probability that there are not
any outliers in one sample of M points is,

P = 1− (1− (1− e)M )Nt (2.4)

This equation can be inverted to solve for Nt.

Nt =
log(1− P )

log(1− (1− e)M )
(2.5)

Thus, for this problem, the number of iterations of the
RANSAC loop can be defined with a desired probability
of a pure-inlier sample P , the sample size of M points,
and the expected outlier percentage e. In Fig. 1, it can
be seen that as the number of trials increases, the suc-
cess confidence increases, and that for increasing outlier
percentages, the number of trials increases.

Figure 1: Trials vs Failure Rate for varying Outlier Ratios -
Sample size of M = 3 points.

3 Maximum Likelihood Estimation - MLESAC

MLESAC, first investigated in 2000 [1], is a general-
ized method of RANSAC; instead of setting a threshold
on the errors to determine the best model, the likelihood
of inliers and outliers is investigated by inspection of the
various statistical properties of the dataset.

To begin, from [9] the n-dimensional Probability Den-
sity Function (PDF) for a multivariate normal distribution
is, for a symmetric positive definite diagonal covariance
matrix Σ, and mean µ,
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f(x | Σ,µ) =
1√

(2π)k|Σ|
(3.1)

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

Recall that the term (x − µ)TΣ−1(x − µ) is the Ma-
holonobis distance. For a single dimension case, the PDF
is as follows,

f
(
x | µ, σ2

)
=

1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
(3.2)

For n one-dimensional equally distributed normal vari-
ables, the likelihood is,

f
(
x1, . . . , xn | µ, σ2

)
=

n∏
i=1

f
(
xi | µ, σ2

)
(3.3)

=

n∑
i=1

(
1

σ
√
2π

)n

exp

(
− (xi − µ)

2

2σ2

)

Where the product is simplified to a sum of exponen-
tial terms. Back to the single-dimension case, in MLE-
SAC, the residuals are modeled as a Gaussian mixture
with standard deviation σ, where γ is the mixing parame-
ter between 0 and 1, or inlier ratio, and ν is the diameter
of the expected range in which outliers are expected to
fall [8].

Pr(e) = γ
1

σ
√
2π

exp

(
− e2

2σ2

)
+ (1− γ)

1

v
(3.4)

Applying the mixture to the n-dimensional PDF and
taking the negative logarithm to minimize the negative
log-likelihood, we obtain an expression for the MLESAC
loss function,

L = − log

[
n∑

i=1

γ

(
1

σ
√
2π

)d

exp

(
− e2i

2σ2
(3.5)

+ (1− γ)
1

v

)]

Here d is the dimension of the dataset, and for the
case of pose estimation is d = 3. To implement this as a
numerical method, an approach to estimate and minimize
γ must be defined since it is not directly observable. This
approach is called Expectation Minimization [1]. First, a
guess for γ is determined, which begins at γ0 = 1

2 meaning

that the dataset is a half-and-half mixture of inliers and
outliers.

Next, since the probability that a given point is an
inlier is of interest, γ can be guessed as a mean of the
probabilities that a given datum is an inlier, over the dis-
tribution of errors for the given point. pi is the likelihood
that a given point is an inlier, and po is the likelihood that
a given point is an outlier.

γ =
1

n

n∑
i=1

pi
pi + po

(3.6)

pi = γ

(
1

σ
√
2π

)d

exp

(
− e2i
2σ2

)
(3.7)

po = (1− γ)
1

v
(3.8)

Then, after calculating L, one can compare it to the
minimum L calculated previously and save the pose as
optimal. These steps are shown in pseudocode in Alg. 2.

Algorithm 2 Maximum Likelihood Consensus

1: for k ≤ Nt do
2: Randomly sample (X,Y ) → (x,y)
3: Estimate pose (T , b)
4: Compute Y k = TX + b
5: Compute e = ||Y − Y k||
6: Set γ0 = 1

2
7: while δ > tconv do
8: Increment i = i+ 1
9: Estimate γ using Eqs. (3.6-3.8)

10: Check for convergence, δ = |γi−1 − γi|
11: end while
12: Compute L
13: if L < Lmin then
14: Save T , b, and C as the best
15: L = Lmin

16: end if
17: end for

It would be wise to set a maximum iteration number
on the expectation minimization (Alg. 2, 7-11), to not
ever experience an indeterminate solution.

4 Statistically Optimal RANSAC

Under development by XAnalytix, SO-RANSAC is a
method for determining an optimal pose estimate, more
accurate than that of Horn’s Algorithm [4]. By using the
known covariance of the points of correspondence in the
pose estimation, the covariance in the pose estimation can
be recovered and assists in the computation of the Ma-
halonobis distance. Instead of a tolerance on the errors,
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like RANSAC, SO-RANSAC sets a tolerance on the Ma-
halonobis Distance. Note that this is the author’s inter-
pretation of SO-RANSAC.

The covariance of the input points can be defined as
follows, where σ1 is the measurement noise, and σ2 is gen-
erally zero unless your known dataset has noise.

R =

[
σ2
1I3×3 03×3

03×3 σ2
2I3×3

]
(4.1)

Algorithm 3 Statistically Optimal RANSAC

1: for k ≤ Nt do
2: Randomly sample (X,Y ) → (x,y)
3: Estimate pose and covariance (T , b,RY ) using R
4: Compute Y k = TX + b
5: Compute e = ||Y − Y k||
6: Compute Maholonobis Distance h2

7: Compute C = h2 ≤ th
8: Calculate ck = size(C)
9: if cbest < ck then

10: Save T , b, and C as the best
11: ck = cbest
12: end if
13: end for

5 Simulation and Results

The following section describes the methods for com-
paring the estimation algorithms, and the results that
were produced over the Monte Carlo simulation. All im-
plementation occurred using MATLAB R2023a.

5.1 Classification Metrics

Classification is a common problem in machine learn-
ing and computer vision to categorize data into different
groups based on various qualities of that data. For the
example of inliers and outliers in a set of points, there are
only two options for what a point is classified as. Though,
if the prediction of a model is taken into account, a true
or false prediction can occur. Therefore, for two classifica-
tions of data and two options for correctness, gives 22 = 4
possible predictive outcomes. Each of these outcomes is
defined in Fig. 2. This type of diagram is known as a
Confusion Matrix and is a common method for measuring
the predictions of a classification algorithm.

Assuming that an inlier is a positive class, and the
outlier is the negative class, the rest follows. Thus a true
positive (TP ) corresponds to a correctly identified inlier, a
false positive (FP ) corresponds to an incorrectly identified
inlier, (FN) a false negative corresponds to an incorrectly
identified outlier, and a (TN) true negative corresponds
to a correctly identified outlier.

It is intuitive to think that an algorithm will maximize
the true predictions and minimize the false predictions to
stay consistent with the model. Two outputs from the
Confusion Matrix are the Precision and Recall of the al-
gorithm, also known occasionally as confidence and sen-
sitivity respectively. From Eq. 5.1, precision is defined
as the ratio of the correctly identified inliers to all of the
predicted inliers; this effect is obtained by including the
falsely identified inliers in the denominator. A precision of
1 occurs when all inliers are accounted for, and no outliers
are falsely identified as inliers.

Figure 2: (2×2) Confusion Matrix.

Precision = P =
TP

TP + FP
(5.1)

From Eq. 5.2, recall is defined as the ratio of the cor-
rectly identified inliers to all of the predicted inliers; this
effect is obtained by including the falsely identified out-
liers in the denominator. A precision of 1 occurs when all
inliers are accounted for, and no inliers are falsely identi-
fied as outliers.

Recall = R =
TP

TP + FN
(5.2)

The F-Score is another commonly used classification
metric, and it is a weighted sum of precision and recall,
with β as the weighting parameter.

Fβ = (1− β2)
P ×R

β2 × P +R
(5.3)
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For β = 1, the F1 score is a common metric,

F1 =
2× P ×R

P +R
(5.4)

5.2 Monte Carlo Simulation

To compare the performance of these algorithms,
Monte Carlo simulations were generated for various sit-
uations. First, using the vertices from a large point cloud
provided by NASA containing 811 Points, Gaussian noise
with σ = 1 × 10−5 was applied, and next 25% outliers
were introduced to the measurement dataset, replacing
previous measurement points.

For each algorithm, there is an input that determines
the tolerance of the algorithm to the applied measurement
noise σ when deciding whether a given datum is an inlier
or outlier. These are then input into the algorithms that
have a given number of trials that the algorithms have to
determine the optimal pose output. For each prediction,
by each algorithm, a confusion matrix can be constructed,
which can calculate metrics such as precision, recall, and
F1 Score, as discussed in the prior section. Figs. 3-4,
show the results of the Monte Carlo simulation compar-
ing the F1-Score of the three algorithms. Fig. 3 shows a
tighter tolerance at 1σ whereas Fig. 4 shows a more real-
istic view of a 5σ tolerance. It can be seen that the SO-
RANSAC takes fewer trials to achieve a higher score and
that RANSAC and MLESAC have similar performance as
you increase the multiplier on σ.

Figure 3: Algorithm F1 score comparison at 1σ.

Figure 4: Algorithm F1 score comparison at 5σ.

6 Conclusion

SO-RANSAC has a higher combined precision and re-
call than both MLESAC and RANSAC. The main contrib-
utor to this difference is the recall, which may influence
the appearance of the equally weighted F1-Score. Even
though fewer trials are necessary to obtain a more accu-
rate pose, there is still a large computational cost for SO-
RANSAC, which is one to two orders of magnitude larger
than the computational time of MLESAC and RANSAC.
Therefore, for SO-RANSAC to give the best computa-
tional value, it must make up in accuracy, what it fails in
computational cost. Further investigation into the com-
putational cost of these algorithms is necessary to deter-
mine the situations in which one may be preferred. As
it stands, MLESAC is likely the most cost-effective algo-
rithm, while SO-RANSAC has higher combined precision
and recall than the others, making it the best choice when
computation time is not of concern.

Future work could also consist of generating novel ways
to more accurately portray the noise of the LIDAR. Since
the outlier and noise application does not take into ac-
count the line of sight of the LIDAR system, the simula-
tion may not perfectly portray the behavior of the LIDAR
in a real system. Implementing these robust estimation al-
gorithms will be important for future refinement of robotic
and remote sensing systems that use computer vision to
inform navigation.
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